Monochromators for XRF in the photon energy range of 900-1800 eV

Stefan Braun*, Reiner Dietsch#, Thomas Foltyn, and Andreas Leson

IWS Dresden, Fraunhofer Institute for Material and Beam Technology, Winterbergstr. 28, D-01277 Dresden, Germany # AXO DRESDEN GmbH, Siegfried-Rädel-Str. 31, D-01809 Heidenau, Germany * e-mail: stefan.braun@iws.fraunhofer.de, phone: +49.351.2583.432, fax: +49.351.2583.314

Introduction

Problem

Wavelength dispersive X-ray fluorescence analysis requires X-ray monochromators with

- high reflectance => decrease of detection limits
- high resolving power => increase of selectivity

However: Best values for reflectance and resolving power can not be obtained with the same multilayer

=> Possible solution: Deposition of two multilayers onto one mirror!

Multilayer mirror for synchrotron applications.

Left hand side: B₄C/Si multilayer with high resolving power

Right hand side: Mo/Si multilayer with high reflectance

=> Depending on the application needs, the mirror can be switched between high resolution and high reflectance mode.

Theoretical and experimental results

Theory

Questions

• Which multilayer combination results in the highest reflectance?

• Which multilayer combination results in the highest resolving power?

Answers

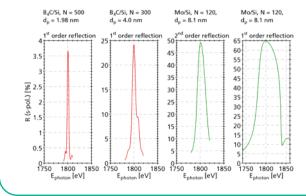
Si and B₄C have the lowest absorption below E = 1800 eV
For high reflectance, absorber layer materials with the best compromise between high contrast to the refraction index of the spacer material and lowest possible absorption are needed => several candidates: Mo, W, Ru, ...

 For high resolving powers, a high number of periods is necessary, which contribute to the total multilayer reflection
 > decrease of the period thickness and increase of the number of periods N

=> decrease of the period thickness and increase of the number of periods N => absorber layers with lowest possible absorption

Experimental results

B₄C/Si multilayers with high resolving powers

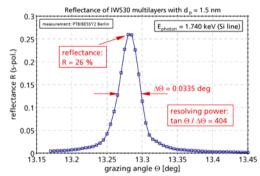

Theory predicts highest resolving powers for B_4C/Si multilayers.

Open question:

Multilayer morphology (interface diffusion and roughness) of real multilayers?

- TEM investigation:
- atomically smooth interfaces
- no significant interdiffusion

Reflectance versus resolution


Reflectance versus photon energy

Reflectance steadily increases with photon energy up to absorption edges of the multilayer materials. => Tungsten based multilayers only useful for photon energies ≤ 1.5 keV (Al emission line).

Recent developments: TIAP replacement

IWS30 multilayers with higher resolving powers and better reflectances than W/B₄C multilayers and TIAP crystals!

Comparison with other multilayer types and the TIAP crystal:

Γ	type	Mo/Si	Mo/Si	B₄C/Si	B₄C/Si	W/B ₄ C	IWS30	TIAP
	d _p [nm]	8.1	8.1	4.0	2.0	1.51	1.55	
	Örder	1 st	2 nd	1 st	1 st	1 st	1 st	1 st
	E [keV]	1.8	1.8	1.8	1.8	1.74	1.74	1.74
	R [%]	65	49	24	3.7	21	26	~ 25
	Ε/ΔΕ	31	89	203	492	309	404	~ 400

=> Replacement of the TIAP crystal by IWS30 multilayers possible!

=> High performance of IWS30 for emission lines up to sulfur.

Acknowledgments

We would like to thank F. Scholze, C. Laubis and B. Beckhoff (PTB/BESSY2 Berlin) for the reflectance measurements.

Fraunhofer Institute Material and Beam Technology